BSc(H) Computer Science, V Semester (LOCF)

S.No. Topic Reference[1] Lectures **Introduction: Digital Image** Ch 1 1 8 Fundamentals Brightness, Adaptation 1.1 (pp -18-19),1.4 and Discrimination, Light and (pp 41-43) Electromagnetic Spectrum, Image **Ch 2** Sampling and Quantization, Some Basic 2.1(pp 50-54) Relationships Between Pixels, Types of 2.2(pp 54-57, 61-63) 2.4(pp 63-79) images 2.5(pp 79-83) 2 **Spatial Domain Filtering** Ch 3 10 Some Basic Intensity Transformation 3.1(pp 120-122) Functions, Histogram Equalization, 3.2,3.3(pp 122-140), Spatial Correlation and Convolution, 3.4(pp 153-160), Smoothening Spatial Filters: Low pass 3.5(pp 164-175), filters, Order Statistics filters, Sharpening 3.6(1pp 75-182) Spatial Filters: Laplacian filter 3 **Filtering in Frequency Domain** 10 Ch 4 The Discrete Fourier Transformation 4.4(pp 225-229), (DFT), Frequency Domain Filtering: Ideal 4.5(pp 230-232,240) and Butterworth Low pass and High pass 4.7(pp 260filters, DCT Transform (1D, 2D). 268),4.8(pp 272-276, 278-281), 4.9(pp 284-289) ch 7 (pp 487-488) 4 Image Restoration: Image Ch 5 8 Degradation/Restoration Process, Noise 5.1(pp 318), models, Noise Restoration Filters 5.2(pp 318-325), 5.3(pp 327-332) 5 Image Compression: Fundamentals of **Ch 8** 6 Image Compression, Huffman Coding, 8.1(pp 540-553), Run Length Coding, JPEG. 8.2(pp 553-556), 8.6(pp 566-571) 8.9(pp 588-589) **Morphological Image Processing:** 10 6 Ch 9 Erosion, Dilation, Opening, Closing, Hit-9.1-9.5 (pp 636-666) or-Miss Transformation, Basic Morphological Algorithms. 7 Image Segmentation: Point, Line and Ch 10 8 Edge Detection, Thresholding, Region 10.1, 10.2(pp 700-Based Segmentation. 723, 735-736), 10.3(742-751),

Digital Image Processing (BHCS16A) Discipline Specific Elective - (DSE)

	10.4(764-770)	
--	---------------	--

References

1. Gonzalez, R. C., & Woods, R. E. (2017). Digital Image Processing. 4th edition. Pearson Education.

2. Jain, A. K. (1988). Fundamentals of Digital Image Processing. 1st edition Prentice Hall of India.

Additional Resources

1. Castleman, K. R. (1995.). Digital Image Processing. 1st edition. Pearson Education 2. Conzoloz, P. C. Woods, P. F., & Edding, S. (2004). Digital Image Processing using

2. Gonzalez, R. C., Woods, R. E., & Eddins, S. (2004). Digital Image Processing using MATLAB. Pearson Education Inc.

3. Schalkoff, D. (1989). Image Processing and Computer Vision. 1st edition. John Wiley and Sons.

Practical List

1. Write program to read and display digital image using MATLAB or SCILAB

- a. Become familiar with SCILAB/MATLAB Basic commands
- b. Read and display image in SCILAB/MATLAB
- c. Resize given image
- d. Convert given color image into gray-scale image
- e. Convert given color/gray-scale image into black & white image
- f. Draw image profile
- g. Separate color image in three R G & B planes
- h. Create color image using R, G and B three separate planes
- i. Flow control and LOOP in SCILAB
- j. Write given 2-D data in image file
- 2. To write and execute image processing programs using point processing method
 - a. Obtain Negative image
 - b. Obtain Flip image
 - c. Thresholding
 - d. Contrast stretching
- 3. To write and execute programs for image arithmetic operations
 - a. Addition of two images
 - b. Subtract one image from other image
 - c. Calculate mean value of image
- 4. To write and execute programs for image logical operations
 - a. AND operation between two images
 - b. OR operation between two images
 - c. Calculate intersection of two images
 - d. NOT operation (Negative image)
- 5. To write a program for histogram calculation and equalization using
 - a. Standard MATLAB function
 - b. Program without using standard MATLAB functions
- 6. To write and execute program for geometric transformation of image
 - a. Translation

- b. Scaling
- c. Rotation
- d. Shrinking
- e. Zooming

7. To understand various image noise models and to write programs for

- a. image restoration
- b. Remove Salt and Pepper Noise
- c. Minimize Gaussian noise
- d. Median filter
- 8. Write and execute programs to use spatial low pass and high pass filters
- 9. Write and execute programs for image frequency domain filtering
 - a. Apply FFT on given image
 - b. Perform low pass and high pass filtering in frequency domain
 - c. Apply IFFT to reconstruct image

10. Write a program in C and MATLAB/SCILAB for edge detection using different edge detection mask

11. Write and execute program for image morphological operations erosion and dilation.